FUNCTIONAL MATHS

Pythagoras

1. ABC is a right angled triangle. Find the length of AB.

$$6^{2} + 8^{2} = c^{2}$$

$$c^{2} = 100$$

$$c = \sqrt{100} = 10 cm$$

(3 marks)

2. XYZ is a right angled triangle. Find the length of YZ.

3. Find the length of x.

$$7^{2} + 11^{2} = x^{2}$$

$$x^{2} = 170$$

$$x = \sqrt{170} = 13.04 \ cm$$

(3 marks)

4. Find the length of y.

$$15^{2}-13^{2} = y^{2}$$
$$y^{2} = 56$$
$$y = \sqrt{56} = 7.48 m$$

5. DEF is a right angled triangle. Find the length of DF.

$$3.4^{2} + 7.1^{2} = DF^{2}$$

$$DF^{2} = 61.97$$

$$DF = \sqrt{61.97} = 7.87 cm$$

(3 marks)

6. LMN is a right angled triangle. Find the length of LN.

$$13.9^2 - 11.3^2 = LN^2$$
$$LN^2 = 65.52$$

$$LN = \sqrt{65.52} = 8.09 \ cm$$

7. Shown below is a rectangle. Find the length of the diagonal.

$$7^{2} + 14^{2} = x^{2}$$

$$x^{2} = 245$$

$$x = \sqrt{245} = 15.65 m$$

(3 marks)

8. ABC is a right angled triangle. Find the perimeter of the triangle.

$$7.5^{2} + 11^{2} = AB^{2}$$

$$AB^{2} = 177.25$$

$$AB = \sqrt{177.25} = 13.31 cm$$

Perimeter: 7.5 + 11 + 13.3 = 31.8 cm

(4 marks)

9. XYZ is an isosceles triangle. Find the area of the triangle.

$$6^{2} - 4.5^{2} = h^{2}$$
 $h^{2} = 15.75$
 $x = \sqrt{15.75} = 3.97 \ mm$
 $Area: \frac{3.97 \times 9}{2} = 17.86 \ mm^{2}$

(4 marks)

Below is a triangle.Is this triangle right angled? Show all workings.

It's not right angled

11. A car drives 32 miles east from town A to town B. It then travels 51 miles north to town C. What is the direct distance from town A to town C?

12. Work out the distance between coordinates A and B.

$$6^{2} + 3^{2} = AB^{2}$$

$$AB^{2} = 45$$

$$AB = \sqrt{45} = 6.71 \text{ miles}$$

FUNCTIONAL MATHS

Pythagoras

13. Work out the area of the square.

Length of the square: $4^2 + 3^2 = c^2$

$$c^2 = 25$$

$$c = \sqrt{25} = 5$$

Area: $5 \times 5 = 25 \text{ units}^2$

(4 marks)

14. Point A has coordinates (-2, 5)
Point B has coordinates (5, 12)
Calculate the length of the line segment AB.

$$7^2 + 7^2 = AB^2$$

$$AB^2 = 98$$

$$AB = \sqrt{98} = 9.9 \ units$$

(4 marks)